首页 > 蛋白相关 > 蛋白相关检测 > Western Blot实验 > 膜再生液(抗体去除液、抗体剥离液) 温和型 P1650

膜再生液(抗体去除液、抗体剥离液) 温和型 P1650厂家直销,提供OEM定制服务!
  • 品  牌:

    普利莱
  • 货  号:

    P1650-100
  • 购买数量:

    +
  • 价格:120.00-380.00
  • 加入购物车 立即购买
  • 产品详情
  • 说明书下载
  • 引用文献

描述:

膜再生液,也称做抗体剥离液体、一抗二抗去除液。允许对同一张膜进行多次Western Blot检测。在室温条件下,将用过的膜浸泡在膜再生液中30分钟,能够选择性清除与膜抗原结合的第一抗体及第二抗体,但不影响电转移到膜上的蛋白。随后可以使用不同的抗体进行下一轮Western Blot实验,可利用同一张膜进行多次蛋白检测。不仅适宜用少量样品多次检测多种不同蛋白,即使样品量并不匮乏,采用这种多次检测同一张膜上的蛋白的策略,能省去给药处理、蛋白电泳和膜转移等耗费性步骤。

特点:

1)无毒无味无害,室温保存和使用;

2)可对同一张膜进行10次以上的Western Blot检测。

适用:

硝酸纤维素膜或PVDF膜。使用前膜可以保存在PBSTBS缓冲液,也可以室温干燥保存数月。

干的PVDF膜应该先用甲醇泡5分钟。

安全性:

无毒无味。按照普通化学品安全规范进行操作和处置。

储存:

室温保存,一年有效。温度过低可能出现浑浊。

效果展示:

第一次Western Blot 第一次Western Blot后用膜再生液处理,然后进行第二次Western Blot

操作步骤:

1. 将膜充分浸泡于适当体积的再生液中,室温孵育15~30分钟并不时晃动。孵育时间的长短应参考后面的说明进行优化。洗脱某些抗体需要较长的时间如30~60分钟。

2. 用镊子取出膜,用自备Western Blot洗涤缓冲液或普利莱封闭洗涤缓冲液(B1009)淋洗膜一次,再洗膜5分钟。

3. 此时膜上抗体已去除,膜已再生。用脱脂奶粉或BSA封闭,进行下一轮Western Blot实验。

说明:

1. 膜再生或Stripping的实质是在不影响膜上结合的抗原的条件下,将与抗原分子结合的一抗和二抗洗脱下来。有许多因素影响抗体从膜上的洗脱,如膜的类型、抗体类型和浓度及其与抗原结合特性等。按下面的说明优化再生液中孵育膜的时间至关重要。

2. 确定膜上抗体是否去除与优化再生液中孵育膜的时间:用ECL工作液孵育再生后的膜约1分钟,然后进行X光胶片曝光并显影,可确定膜上的抗体是否完全去除。如显示条带,表明抗体未完全去除,应继续将膜浸泡在再生液中孵育30~60分钟。然后再次ECL 检查膜上抗体是否去除。重复此步骤直到抗体完全去除并确定最佳孵育时间。

3. 由于至今尚不清楚的原因,使用脱脂奶粉封闭的膜要比使用BSA封闭的膜上的抗体更容易被Strip下来。因此准备进行Strip的膜,应该使用脱脂奶粉而不是BSA封闭。

4. 尽量避免使用干燥保存的膜,因为干的膜上的抗体很难被Strip干净

部分使用普利莱膜再生液发表的SCI文章,供参考:


1. Huang M, Liu X, DU Q, et al. Inhibitory effects of sunitinib on ovalbumin-induced chronic experimental asthma in mice[J]. Chinese medical journal, 2009, 122(09): 1061-1066.

2. Wang X, Liu Y, Jia M, et al. Phosphorylated SNAP25 in the CA1 regulates morphineassociated contextual memory retrieval via increasing GluN2BNMDAR surface localization[J]. Addiction Biology, 2018, 23(5): 1067-1078.

3. Yang M, Ma H, Jia M, et al. The role of the nucleus accumbens OXR1 in cocaine-induced locomotor sensitization[J]. Behavioural Brain Research, 2020, 379: 112365.

4. Pang Q, Wang P, Pan Y, et al. Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease[J]. Cell Death & Disease, 2022, 13(3): 283.

5. Liu Y, Wang X J, Wang N, et al. Electroacupuncture ameliorates propofol-induced cognitive impairment via an opioid receptor-independent mechanism[J]. The American Journal of Chinese Medicine, 2016, 44(04): 705-719.

6. Wang S, Chai X, Yan Z, et al. Novel FGFR1 Variants Are Associated with Congenital Scoliosis[J]. Genes, 2021, 12(8): 1126.

7. Wang J Y, Xia Q, Chu K T, et al. Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy[J]. Journal of Neuropathology & Experimental Neurology, 2011, 70(4): 314-322.

8. Yang M, Li J, An Y, et al. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary[J]. Tissue and Cell, 2015, 47(5): 526-532.

9. Wang S, Chai X, Yan Z, et al. Novel FGFR1 Variants Are Associated with Congenital Scoliosis. Genes 2021, 12, 1126[J]. Genetic Conditions Affecting the Skeleton, 2021: 35.

10. Ren T, He J, Jiang H, et al. Metformin reduces lipolysis in primary rat adipocytes stimulated by tumor necrosis factor-a or isoproterenol[J]. Journal of molecular endocrinology, 2006, 37(1): 175-184.

11. Yang L, Jia X, Fang D, et al. Metformin Inhibits Lipid Droplets Fusion and Growth via Reduction in Cidec and Its Regulatory Factors in Rat Adipose-Derived Stem Cells[J]. International Journal of Molecular Sciences, 2022, 23(11): 5986.

12. Zhang T, He J, Xu C, et al. Mechanisms of metformin inhibiting lipolytic response to isoproterenol in primary rat adipocytes[J]. Journal of molecular endocrinology, 2009, 42(1): 57-66.

13. Zhang Y, Su X, Dong Y, et al. Cytological and functional characteristics of fascia adipocytes in rats: A unique population of adipocytes[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2020, 1865(2): 158585.

14. Wang J, Hou J, Lei H, et al. Synergistic neuroprotective effect of microglialconditioned media treated with geniposide and ginsenoside Rg1 on hypoxia injured neurons[J]. Molecular Medicine Reports, 2015, 12(4): 5328-5334.

15. Zhang G R, Cheng X R, Zhou W X, et al. Age-related expression of calcium/calmodulin-dependent protein kinase II A in the hippocampus and cerebral cortex of senescence accelerated mouse prone/8 mice is modulated by anti–Alzheimer's disease drugs[J]. Neuroscience, 2009, 159(1): 308-315.

16. He L, Wang X, Kang N, et al. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling[J]. Cell and tissue research, 2018, 372: 99-114.

17. Zhao X, Gao M, He J, et al. Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice[J]. PLoS One, 2015, 10(4): e0123738.

18. Liu T, Li T, Chen X, et al. EETs/sEHi alleviates nociception by blocking the crosslink between endoplasmic reticulum stress and neuroinflammation in a central poststroke pain model[J]. Journal of Neuroinflammation, 2021, 18: 1-19.

19. Dang Y, An Y, He J, et al. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression[J]. Aging Cell, 2020, 19(1): e13060.

20. Liu T, Li T, Chen X, et al. A network-based analysis and experimental validation of traditional Chinese medicine Yuanhu Zhitong Formula in treating neuropathic pain[J]. Journal of Ethnopharmacology, 2021, 274: 114037.

21. Zhang Y, Su X, Dong Y, et al. Cytological and functional characteristics of fascia adipocytes in rats: A unique population of adipocytes[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2020, 1865(2): 158585.

22. Dang Y, An Y, He J, et al. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression[J]. Aging Cell, 2020, 19(1): e13060.

23. Zu L, Jiang H, He J, et al. Salicylate blocks lipolytic actions of tumor necrosis factor-α in primary rat adipocytes[J]. Molecular pharmacology, 2008, 73(1): 215-223.

24. Liu T, Li T, Chen X, et al. EETs/sEHi alleviates nociception by blocking the crosslink between endoplasmic reticulum stress and neuroinflammation in a central poststroke pain model[J]. Journal of Neuroinflammation, 2021, 18: 1-19.

25. Zhai W, Xu C, Ling Y, et al. Increased lipolysis in adipose tissues is associated with elevation of systemic free fatty acids and insulin resistance in perilipin null mice[J]. Hormone and metabolic research, 2010, 42(04): 247-253.

26. Ren T, He J, Jiang H, et al. Metformin reduces lipolysis in primary rat adipocytes stimulated by tumor necrosis factor-a or isoproterenol[J]. Journal of molecular endocrinology, 2006, 37(1): 175-184.

27. Zhao X, Gao M, He J, et al. Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice[J]. PLoS One, 2015, 10(4): e0123738.

28. Deng J, Liu S, Zou L, et al. Lipolysis response to endoplasmic reticulum stress in adipose cells[J]. Journal of Biological Chemistry, 2012, 287(9): 6240-6249.

29. Zhang T, He J, Xu C, et al. Mechanisms of metformin inhibiting lipolytic response to isoproterenol in primary rat adipocytes[J]. Journal of molecular endocrinology, 2009, 42(1): 57-66.

30. Liu T, Li T, Chen X, et al. A network-based analysis and experimental validation of traditional Chinese medicine Yuanhu Zhitong Formula in treating neuropathic pain[J]. Journal of Ethnopharmacology, 2021, 274: 114037.

相关产品
版权所有 北京普利莱基因技术有限公司 Applygen Technologies Inc.